Abstract

Photoionized plasmas are encountered in astrophysics wherever low-temperature gas/plasma is bathed in a strong radiation field. X-ray line emissions in the several kiloelectronvolts spectral range were observed from accreting clouds of binary systems, such as CYGNUS X-3 and VELA X-1, in which high-intensity x-ray continua from compact objects (neutron stars, black holes or white dwarfs) irradiate the cold and rarefied clouds. X-ray continuum-induced line emission accurately describes the accreting clouds, but experimental verification of this photoionized plasma model is scarce. Here we report the generation of photoionized plasmas in the laboratory under well-characterized conditions using a high-power laser. A blackbody radiator at a temperature of 500 eV, corresponding to a compact object, was created by means of a laser-driven implosion. The emerging x-rays irradiate a low-density (ne < 1020 cm−3) and low-temperature (Te < 30 eV) silicon plasma. Line emissions from lithium- and helium-like silicon ions were observed from a thermally cold silicon plasma in the 1.8–1.9 keV spectral region, far from equilibrium conditions. This result reveals the laboratory generation of a photoionizing plasma. Atomic kinetic calculations imply the importance of direct K-shell photoionization by incoming hard x-rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.