Abstract

Laboratory transmission soft X-ray microscopy (L-TXM) has emerged as a complementary tool to synchrotron-based TXM and high-resolution biomedical 3D imaging in general in recent years. However, two major operational challenges in L-TXM still need to be addressed: a small field of view and a potentially misaligned rotation stage. As it is not possible to alter the magnification during operation, the field of view in L-TXM is usually limited to a few tens of micrometers. This complicates locating areas and objects of interest in the sample. Additionally, if the rotation axis of the sample stage cannot be adjusted prior to the experiments, an efficient workflow for tomographic imaging cannot be established, as refocusing and sample repositioning will become necessary after each recorded projection. Both these limitations have been overcome with the integration of a visible-light microscope (VLM) into the L-TXM system. Here, we describe the calibration procedure of the goniometer sample stage and the integrated VLM and present the resulting 3D imaging of a test sample. In addition, utilizing this newly integrated VLM, the extracellular matrix of cryofixed THP-1 cells (human acute monocytic leukemia cells) was visualized by L-TXM for the first time in the context of an ongoing biomedical research project.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.