Abstract
AbstractData describing sediment generation focusing on the temporal evolution of size gradation are required for the prediction of long‐term landform evolution. This paper presents such data for the salt weathering of a quartz‐chlorite schist obtained from the Ranger Uranium Mine in northern Australia. Rock fragment samples are subjected to three different climate regimes: (1) a dry season climate; (2) a wet season climate (both based on observations at the Ranger site); and (3) an oven‐drying sequence designed to test the sensitivity of the weathering process by exposing the rocks to more extreme temperatures. Two MgSO4 salt solutions are applied, one being typical of wet season runoff and the other a more concentrated solution. Salt solution is applied daily in the wet season experiments and once only at the beginning of the dry season experiments. Results of the experiments reveal four stages of weathering. The kinetics of each stage are described and related to the formation of sediment of different sizes. Wet season climate conditions are shown to produce greater moisture variability and lead to faster weathering rates. However, salt concentrations in the wet season are typically lower and so when climate is combined with observed salt concentrations, the dry and wet season experiments weather at approximately equal rates. Finally, small variations in rock properties were shown to have a large impact on weathering rates, leading to the conclusion that rock weathering experiments need to be carefully designed if results are to be used to help predict weathering behaviour at the landscape scale. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.