Abstract

Soil radon is employed to trace residual NAPL (Non-Aqueous Phase Liquid) contamination because it is very soluble in these substances and is strongly depleted over polluted volumes of the subsoil. The solubility of radon into NAPL vapors, generally poorly considered, is investigated here, either as growth of radon exhalation from a material contaminated with increasing volumes of kerosene, or as radon partition between liquid kerosene, water and total air, considered ad the sum of kerosene vapors plus air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.