Abstract

A series of repeatable simulation tests have been carried out on an experimental system that forms a shallow water layer with free surface on a rotating paraboloid. Photographs taken in a reference frame rotating with the system and results of power spectrum analysis show that large-scale persistent vortices, along with their drifts and evolution are really generated. Under certain conditions, a self-persistent and long-lived anticyclonic solitary vortex drifting in direction opposite to the global rotation of the system appears. This structure is interpreted as the Rossby solitary vortex and taken as a laboratory model of Jupiter's Great Red Spot. The experimental results demonstrate that hydrodynamic instability comes from the effects of shear and Coriolis force, and that large-scale, long-lived coherent vortical structure emerges out of the self-organization of a dissipative system far from the equilibrium state. Inspired by many experiments, we put forward a semi-empirical model from the fundamental equations of hydrodynamics for certain experimental conditions and derived approximately the solution of Rossby solitary vortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call