Abstract
Abstract The latest oil price decline simply increases the demand for enhanced oil recovery (EOR) and pushes research developers to keep improvements in oil recovery. The goal is always to recover as much oil as possible at the lowest possible cost. Low-salinity water flooding (LSWF) is an EOR method that operates at a lower cost than other EOR methods, which makes it a preferred area of interest for oil industry economists, who continue to call for EOR costs to come down. The objective of this study was to test the ability of low-salinity waterflooding to improve oil recovery from low permeability sandstone reservoirs. Four types of tests were conducted: imbibition, interfacial, core flooding, and zeta potential tests. Three key factors were studied: salinity of the injected water, type of salt, and aging time. Their influence on the amount of oil recovery, stabilized injection pressure, pH, and permeability reduction was determined. Berea sandstone was used in all experiments. Sodium chloride (NaCl) and calcium chloride (CaCl2) were used to prepare the brine. The imbibition test and core flooding results showed that the oil recovery increased as brine concentration decreased for both sodium chloride and calcium chloride. Sodium chloride resulted in higher oil recovery than calcium chloride at a certain salinity in both imbibition and core flooding tests. The oil recovery factor results during the second water flooding cycle (after aging for 24 hrs.) showed more oil recovered during low salinity waterflooding. The stabilized inaction pressure was higher for CaCl2 than NaCl injection at certain flow rate and brine concentrations. Effluent pH values became more basic during low salinity water flooding for both sodium and calcium chloride. The zeta potential results showed that decreasing the salinity of injected water resulted in a decrease of the zeta potential value for both injection cycles, before and after aging for 24 hours. Results also imply Low- salinity water flooding redistributes the flowing paths by releasing sand particles and some fine minerals causing the flow path to narrow. Thus, low salinity water flooding can create a new streamline (fluid flow diversion) and improve both displacement and sweep efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.