Abstract

The over-pumping of freshwater makes shoreline aquifers susceptible to seawater intrusion. Most studies on aquifer homogeneity that are used to form management guidelines focus on salinization sensitivity. However, under certain extraction conditions, the geographic structure can be quite diverse, with low-permeability obstacles and preferred flow routes that affect circulation and saline transport mechanisms. Here, we used a laboratory-scale glass box apparatus of dimension 100 × 50 × 10 cm3 to study intrusion in stratified layers under the influence of an inclined ocean-aquifer boundary with a mixed barrier as a remediation technique. The TL\\H ratio ranged from 0.2 to 12.84 for all stratification conditions and remediation installed. There was a 40–48 % decrease in the extent of toe length after installation. With a mixed barrier installed, the height of the intrusion was reduced, resulting in an increase in the TL\\H and a decrease in the potential for toe length. The intrusion was delayed by 86.67 % in parallel stratification and 28.22 % in perpendicular stratification after comparing the time frame for base case and the mixed barrier installed condition. A parabolic profile of intrusion was observed in the low-permeability layer, while a convex-outward profile was observed in the higher-permeability layers. Similar results are obtained after conducting the sensitivity analysis. The intrusion follows an increasing pattern of ratio with increasing interaction gap opening in parallel stratification, while for perpendicular stratification, with gap opening from 10 cm to 30 cm, there was a decreasing trend followed by an increasing trend, indicating an increase in magnitude with a similar pattern of intrusion. The results of this investigation shed light on the mixed barrier's suitability for use in realistically diverse coastal aquifers. Future research could explore the utilization of different combinations of new barriers, such as under-surface barriers, which work well for stratified layers, and already established barrier systems, to further improve the efficiency of mixed barriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.