Abstract

Phototrophic bioprocesses are a promising puzzle piece in future bioeconomy concepts but yet mostly fail for economic reasons. Besides other aspects, this is mainly attributed to the omnipresent issue of optimal light supply impeding scale-up and -down of phototrophic processes according to classic established concepts. This MiniReview examines two current trends in photobiotechnology, namely microscale cultivation and modeling and simulation. Microphotobioreactors are a valuable and promising trend with microfluidic chips and microtiter plates as predominant design concepts. Providing idealized conditions, chip systems are preferably to be used for acquiring physiological data of microalgae while microtiter plate systems are more appropriate for process parameter and medium screenings. However, these systems are far from series technology and significant improvements especially regarding flexible light supply remain crucial. Whereas microscale is less addressed by modeling and simulation so far, benchtop photobioreactor design and operation have successfully been studied using such tools. This particularly includes quantitative model-assisted understanding of mixing, mass transfer, light dispersion and particle tracing as well as their relevance for microalgal performance. The ultimate goal will be to combine physiological data from microphotobioreactors with hybrid models to integrate metabolism and reactor simulation in order to facilitate knowledge-based scale transfer of phototrophic bioprocesses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.