Abstract

The feasibility of using deep ultraviolet (UV) treatment for abatement of ammonia (NH(3)) in livestock and poultry barn exhaust air was examined in a series of laboratory-scale experiments. These experiments simulated moving exhaust air through an irradiation chamber with variables of UV wavelength and dose, NH(3) concentrations, humidity, and presence of hydrogen sulfide (H(2)S). Ammonia, initially at relevant barn exhaust concentrations in air, was substantially or completely reduced by irradiation with 185 nm light. Reactions were monitored using chemiluminescence detection, gas chromatography with mass spectrometry detection, and Fourier transform infrared spectrometry, of which the latter was found to be the most informative and flexible. Detected nitrogen-containing products included N(2)O, NH(4)NO(3), and HNO(3). It was presumed that atomic oxygen is the primary photochemical product that begins the oxidative cascade. The data show that removal of NH(3) is plausible, but they highlight concerns over pollution swapping due to formation of ozone and N(2)O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.