Abstract

The effect of nacelle motion should be considered when calculating the wind speed relative to the wind turbine structure, which is essential in wind turbine control and performance testing. A Kalman filter approach is applied to estimate the nacelle motion of a wind turbine. Information from several accelerometers and strain gauges which are installed on the wind turbine tower is combined with the Kalman filter. An optimization algorithm is used to choose the optimal locations for strain gauge and accelerometer installation. A laboratory-scale experimental rig which mimics the tower and nacelle of the wind turbine is constructed to evaluate the performance of the proposed estimator algorithm. The usefulness of the proposed algorithm is validated by these laboratory-scale experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.