Abstract
A laboratory scale, bench top flow system was used to partially reproduce dairy plant conditions under which biofilms form and to quantify the effectiveness of caustic and acid wash steps in reducing the number of viable bacteria attached to stainless steel (SS) surfaces. Once bacteria attached to surfaces, a standard clean-in-place (CIP) regime (water rinse, 1% sodium hydroxide at 65 °C for 10 min, water rinse, 1.0% nitric acid at 65 °C for 10 min, water rinse) did not reproducibly ensure their removal. Standard CIP effectiveness was compared to alternative cleaning chemicals such as: caustic blends (Alkazolv 48, Ultrazolv 700, Concept C20, and Reflex B165); a caustic additive (Eliminator); acid blends (Nitroplus and Nitrobrite); and sanitizer (Perform). The addition of a caustic additive, Eliminator, enhanced biofilm removal compared to the standard CIP regime and further increases in cleaning efficiency occurred when nitric acid was substituted with Nitroplus. The combination of NaOH plus Eliminator and Nitroplus achieved a 3.8 log reduction in the number of cells recovered from the stainless steel surface. The incorporation of a sanitizer step into the CIP did not appear to enhance biofilm removal. This study has shown that the effectiveness of a “standard” CIP can possibly be enhanced through the testing and use of caustic and acid blends. There are many implications of these findings, including: the development of improved cleaning regimes and improved product quality, plant performance, and economic returns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.