Abstract

An alluvial river builds its own bed with the sediment it transports; its shape thus depends not only on its water discharge but also on the sediment supply. Here we investigate the influence of the latter in laboratory experiments. We find that, as their natural counterpart, laboratory rivers widen to accommodate an increase of sediment supply. By tracking individual particles as they travel downstream, we show that, at equilibrium, the river shapes its channel so that the intensity of sediment transport follows a Boltzmann distribution. This mechanism selects a well-defined width over which the river transports sediment, while the sediment remains virtually idle on its banks. For lack of a comprehensive theory, we represent this behavior with a single-parameter empirical model which accords with our observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.