Abstract

Abstract Significant advances have been made in formation testing since the introduction of wireline pumpout testers (WLPT), particularly with respect to downhole fluid compositional measurements. Optical sensors and the use of spectroscopic methods have been developed to improve sample quality and minimize sampling time in downhole environments. As a laboratory technique, spectroscopy is a ubiquitous and powerful technology that has been used worldwide for decades to measure the physical and chemical properties of many materials, including petroleum, geological, and hydrological samples. However, laboratory-grade, high-resolution spectrometers are incompatible with the hostile environments encountered downhole, at wellheads, and on pipelines. Only limited resolution techniques are available for the rugged conditions of the oil field. This paper introduces a new optical technology that can provide high-resolution, laboratory-quality analyses in harsh oilfield environments. A new technology for optical sensing, multivariate optical computing (MOC), has been developed and is a non-spectroscopic technique. This new sensing method uses an integrated computation element (ICE) to combine the power and accuracy of high-resolution, laboratory-quality spectrometers with the ruggedness and simplicity of photometers. Many modern sensors typically merge the sensor with the electronics on an integrated computing chip to perform complex computations, resulting in an elegant yet simplistic design. Now, optical sensing using ICE features an analogue optical computation device to provide a direct, simple, and powerful mathematical computation on the optical information, completely within the optical domain. Because the entire optical range of interest is used without dispersing the light spectrum, the measurements are obtained instantly and rival laboratory-quality results. A proof of concept MOC with ICE has been demonstrated, logging more than 7,000 hours, in nearly continuous use for 14 months. Oils with gravities ranging from 14 to 65°API have been measured in downhole environments that range from 3,000 to 20,000 psi, and from 150 to 350°F. Hydrocarbon composition measurements, including saturates, aromatics, resins, asphaltenes, methane, and ethane, have been demonstrated using the MOC configuration. As compositional calculations therein, GOR and density are validated to within 14 scf/bbl and 1%, respectively. The paper discusses the details of the new ICE-based sensor and describes its adaptations to downhole applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call