Abstract

Ultrasonic wave transmission measurements were conducted in order to examine the influence of ice-brine coexisting system grown in porous material on ultrasonic Pand S-waves. We observed the variations of a transmitted wave with a frequency content of 150–1000 kHz through a liquid system to a solid-liquid coexistence system, changing its temperature from 20°C to -15°C. We quantitatively estimated attenuation for porous materials with two different porosities (37.3 and 48.2 %) during the freezing of salty water in porous material by considering different distances between the source and receiver transducers. This paper is concerned with attenuation at ultrasonic frequencies of 500-1000 kHz for P-waves and 100-400 kHz for S-waves. The waveform analyses indicate that the attenuation curves reach their peak at a temperature of -3°C and gradually decrease with decreasing temperature. We found a positive correlation between the attenuation of ultrasonic waves and the existence of unfrozen brine estimated by the pulsed nuclear magnetic resonance (NMR) technique. Thus, the laboratory experiments of the present study demonstrated that ultrasonic waves with such a frequency range are significantly affected by the existence of a solid-liquid coexistence system in the porous material. In terms of a plausible mechanism for attenuation, we must consider the physical interactions between pore fluid and ice, that is, the pore microstructure and permeability in such system is important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.