Abstract

The morphology of sea ice during the early stages of growth is strongly dependent on environmental conditions. Under calm conditions, congelation ice forms through downward growth of ice crystals from the water surface. Under turbulent conditions (surface waves), rapid freezing of ice crystals occurs in the upper water column (frazil ice), eventually consolidating into pancake ice through repeated collisions and agglomeration of the loose frazil crystals. It is expected that high-frequency scattering from the basal layer of the ice varies for different sea ice types and can reveal structural information that governs the behavior of the ice and its interactions with the environment. Broadband scattering measurements of sea ice are presented beginning with ice-free conditions and through initial stages of growth in laboratory experiments for both congelation and frazil ice. With increased interest in drilling for hydrocarbon resources in the Arctic and the associated environmental concerns of an oil spill in ice-covered waters, improved methods for detection of crude oil both under or frozen within sea ice are needed. Acoustic scattering data are presented demonstrating how the scattering changes when crude oil is spilled beneath the ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.