Abstract
The capability to perform laboratory measurements with both low-frequency forced-oscillation and high-frequency wave-propagation methods, under conditions of independently controlled confining and pore-fluid pressure, offers the prospect of new insight into the frequency-dependent seismic properties expected of cracked and fluid-saturated rocks of the Earths upper crust. An important step in the development of such broad-band capability has been the modification of existing laboratory equipment to newly allow flexural, as well as torsional, forced-oscillation testing of cylindrical rock specimens. Flexural oscillation tests on an experimental assembly containing a fused silica control specimen yield results indistinguishable from those of numerical modelling with both finite-difference and finite-element methods ? demonstrating the viability of the method. Both torsional and flexural oscillation methods along with complementary high-frequency wave propagation methods have been applied to specimens of dense polycrystalline alumina and quartzite, each thermally cracked to generate an interconnected network of cracks of low aspect ratio, and tested dry, and saturated with either argon or water. The shear and flexural moduli vary systematically with effective pressure ? providing clear evidence of pressure-induced crack closure. Similarities and differences between effective moduli measured under different conditions of pore-fluid saturation are tentatively interpreted in terms of the timescales for stress-induced redistribution of pore fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.