Abstract

AbstractWe present observations of large‐amplitude (δB/B∼ 0.01) oblique whistler wave pulses generated by a spontaneous, 3‐D localized magnetic reconnection event in the Caltech jet experiment. The wave pulses are measured more than 50 ion skin depths from the reconnection location by a tetrahedron array of three‐axis B‐dot probes that mimic the pyramid flight formations of the Cluster and Magnetospheric Multiscale Mission spacecraft. Measurements of background parameters, wave polarization, and wave dispersion confirm that the pulses are whistler modes. These results demonstrate that localized impulsive reconnection events can generate large‐amplitude, oblique whistler wave pulses that propagate far outside the reconnection region. This provides a new pathway for the generation of magnetospheric whistler pulses and may help explain relativistic particle acceleration in phenomena such as solar flares that incorporate 3‐D localized impulsive magnetic reconnection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.