Abstract

Gas flow mechanisms in shale are urgent to clarify due to the complicated pore structure and low permeability. Core flow experiments were conducted under reservoir net confining stress with samples from the Longmaxi Shale to investigate the characteristics of nonlinear gas flow. Meanwhile, microstructure analyses and gas adsorption experiments are implemented. Experimental results indicate that non-Darcy flow in shale is remarkable and it has a close relationship with pore pressure. It is found that type of gas has a significant influence on permeability measurement and methane is chosen in this work to study the shale gas flow. Gas slippage effect and minimum threshold pressure gradient weaken with the increasing backpressure. It is demonstrated that gas flow regime would be either slip flow or transition flow with certain pore pressure and permeability. Experimental data computations and microstructure analyses confirm that hydraulic radius of flow tubes in shale are mostly less than 100 nm, indicating that there is no micron scale pore or throat which mainly contributes to flow. The results are significant for the study of gas flow in shale, and are beneficial for laboratory investigation of shale permeability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.