Abstract

We study the muon pair production e+e-→μ+μ- in the framework of the nonminimal noncommutative standard model (NCSM) to the second-order of the noncommutative (NC) parameter Θμν at linear collider. The [Formula: see text] momentum-dependent NC interaction significantly modifies the cross-section and angular distributions which are different from the standard model. After including the effects of earth's rotation we analyze the time-averaged and time-dependent observables in detail. The time-averaged azimuthal distribution of the cross-section shows significant departure from the standard model which can be tested at the upcoming linear collider. We find strong dependence of total cross-section (time-averaged) and their distributions on the orientation and the magnitude of the NC electric vector (ΘE). Assuming that the future linear collider data will differ from the standard model result by 5%, we obtain Λ≥615 GeV and Λ≥946 GeV corresponding to the machine energy E com = 1000 GeV and 1500 GeV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call