Abstract

This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.