Abstract

As an aid in interpreting data from space far-infrared (far-IR) missions, such as the Herschel Space Observatory with its Photodetector Array Camera and Spectrometer, this paper presents spectroscopic studies of selected naturally occurring terrestrial sulphide minerals in the wavelength range 15–250 μm. The data can also be used to support the return from other, both past and planned, IR space missions, such as the Infrared Space Observatory, Spitzer, SOFIA, SPiCA and Millimetron. In this study, we present far-IR spectra for 11 natural sulphide minerals in the form of dispersed powders of micron particle dimensions. Samples of various sulphides from the American Museum of Natural History mineral collection were selected based on criteria of diversity and potential astrophysical relevancy, based on their identification in Stardust, in stratospheric interplanetary dust particle samples, or in meteorites. Mineral species include digenite, galena, alabandite, sphalerite, wurtzite, covellite, pyrrhotite, pyrite, marcasite, chalcopyrite and stibnite. Most of the sulphides examined possess prominent and characteristic features in the far-IR range. Spectra obtained are compared to those available from previous studies. Far-IR peak frequencies and mass absorption coefficient values are tabulated. Effects of particle size distribution, low temperature, and provenance on IR spectra are demonstrated for selected samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.