Abstract

Bacteria encounter chemically similar nutrients in their environment that impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B 12 (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly as well as those that do not function efficiently for their metabolism. Here, we performed a laboratory evolution of a cobamide-dependent strain of Escherichia coli with pseudocobalamin (pCbl), a cobamide that E. coli uses less effectively than cobalamin for MetH-dependent methionine synthesis, to identify genetic adaptations that lead to improved growth with less-preferred cobamides. After propagating and sequencing nine independent lines and validating the results by constructing targeted mutations, we found that mutations that increase expression of the outer membrane cobamide transporter BtuB are beneficial during growth under cobamide-limiting conditions. Unexpectedly, we also found that overexpression of the cobamide adenosyltransferase BtuR confers a specific growth advantage in pCbl. Characterization of the latter phenotype revealed that BtuR and adenosylated cobamides contribute to optimal MetH-dependent growth. Together, these findings improve our understanding of how bacteria expand their cobamide-dependent metabolic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.