Abstract

Astrophysical jets play crucial roles in star formation and transporting angular momentum away from accretion discs, however, their collimation mechanism is still a subject of much debate due to the limitations of astronomical observational techniques and facilities. Here, a quasi-static toroidal magnetic field is generated through the interaction between lasers and a four-post nickel target, and our all-optical laboratory experiments reveal that a wide-angle plasma plume can be collimated in the presence of toroidal magnetic fields. Besides the confinement effects, the experiments show the jet can also be accelerated by the enhanced thermal pressure due to the toroidal magnetic fields compressing the flow. These findings are verified by radiation magneto-hydrodynamic simulations. The experimental results suggest certain astrophysical narrow plasma flows may be produced by the confinement of wide-angle winds through toroidal fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.