Abstract
Even though water is the main constituent in interstellar icy mantles, its chemical origin is not well understood. Three different formation routes have been proposed following hydrogenation of O, O2, or O3, but experimental evidence is largely lacking. We present a solid state astrochemical laboratory study in which one of these routes is tested. For this purpose O2 ice is bombarded by H- or D-atoms under ultra high vacuum conditions at astronomically relevant temperatures ranging from 12 to 28 K. The use of reflection absorption infrared spectroscopy (RAIRS) permits derivation of reaction rates and shows efficient formation of H2O (D2O) with a rate that is surprisingly independent of temperature. This formation route converts O2 into H2O via H2O2 and is found to be orders of magnitude more efficient than previously assumed. It should therefore be considered as an important channel for interstellar water ice formation as illustrated by astrochemical model calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.