Abstract

Beauveria bassiana has long been used as a mycopesticide. It has a wide host range; isolates have been reported to differ in host range and virulence to a given insect species. Identification of a molecular marker linked to a virulent phenotype to a target pest would be useful in screening for isolates effective against it. Twenty B. bassiana isolates were tested for their virulence to the second instar larvae of Chilo partellus Swinhoe in laboratory bioassays and their DNA fingerprints were generated by RAPD-PCR. Three arbitrary categories of aggressiveness were chosen; isolates that caused >70%, between 70 and 40% and <40% larval mortality were grouped as highly, medium and less aggressive types, respectively. In the random amplified polymorphic DNA (RAPD) analysis a 30% variability was observed among the isolates; which clustered into three major groups. The groups based on virulence rating did not match with the RAPD clusters. One of the highly aggressive isolates clustered with less aggressive isolates in one cluster and the other grouped along with the medium aggressive isolates in a different cluster. The B. bassiana isolates were classified phenotypically based on the taxonomic order of the original insect host and the climatic zone (tropical/temperate) from which they were isolated. No correlation between the aggressiveness of the isolate and the relatedness of the original insect host to the tested insect was observed; both the highly aggressive isolates were from coleopteran insects. A correlation was found between the RAPD grouping and the phenotypic classification of the isolates. All the lepidopteran isolates grouped into one major cluster, most sub clusters were constituted by isolates from the same climatic zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call