Abstract

Despite the environmental and compaction benefits of warm mix asphalt (WMA), several researchers have expressed concerns over laboratory and field performances of WMA mixes. In this study, a wide range of laboratory tests, namely, dynamic modulus, creep compliance, fatigue, moisture damage, and rutting, was conducted to evaluate the performance of different types of WMA mixes. For this purpose, three WMA mixes, consisting of one mix produced using a zeolite-based WMA additive (containing water), one surface course mix, and one base course mix, the latter two produced with a chemical-based WMA additive with surfactant technology, were collected from different field projects in Texas. In addition, three hot mix asphalt (HMA) mixes with aggregate gradations similar to those of the collected WMA mixes were produced in the laboratory to compare the performance of WMA and HMA mixes. Overall, the WMA mixes yielded lower stiffness, reduced potential of low-temperature cracking, lower fatigue resistance, and a higher rutting potential compared with their HMA counterparts. However, a mixed trend of moisture-induced damage potential was observed for WMA and HMA mixes, when evaluated using retained tensile strength ratio (TSR) and stripping inflection point (SIP) obtained from the Hamburg wheel tracking (HWT) test. In other words, no correlation was found between TSR and SIP values, indicating that passing a TSR test does not guarantee better performance of a mix when tested using an HWT. The results from this study reveal that performance of a WMA mix widely depends on the technology and the type of other additives (e.g. anti-stripping agent) used. The findings of this study are expected to be useful to pavement professionals to better understand the performance of WMA mixes and to develop a database of input parameters for the Mechanistic-Empirical Pavement Design Guide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call