Abstract
Abstract Conventional lubricant products composed of different surfactant materials are required in water-based mud for drilling highly deviated and horizontal pay zone sections due to their lubricity associated with torque reduction and better penetration rate. Drill-in fluid (DIF) filtrate-induced formation damage in low-permeability gas reservoirs as a result of water blockage and reduced relative permeability to gas can be significant in view of the high capillary pressure associated with small pore throats. Formation damage risk assessment of the drilling lubricants utilization was therefore considered critical for a low-permeability gas reservoir development project. Lubricant product evaluation experiments were designed to provide the production impairment potential measurements using Berea and Unayzah sandstone cores with a laboratory formulated DIF and base brine containing 3-4% lubricant by volume and to confirm fluid compatibility with divalent salt (CaCl2) brine. Fluid compatibility and emulsion risk was investigated using mineral oil as the representative formation hydrocarbon fluid. Core flood and dynamic filtration tests were carried out at an estimated bottom-hole temperature of 250 °F and pressure of 1,000 psi for the high-temperature reservoirs while the compatibility tests were carried out at room temperature. Filter cake removal tests were also performed by using high pressure, high-temperature filter press equipment and synthetic disks to determine filter cake removal efficiency with acid brine breaker fluid. The obtained results from the laboratory study were integrated to evaluate and rank the lubricants based on their assessed formation damage risk. The test results showed that both lubricant return permeability and compatibility tests were important in selecting the best performance lubricant. This paper discusses the experimental analysis of the formation damage potential of 12 commercially available water-based mud (WBM) lubricants. It also provides an insight into the formation damage (FD) impact of the drilling fluid lubricants on gas reservoir deliverability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.