Abstract

The majority of the existing railway systems in China, from roadside slopes to retaining walls, suffered from poor drainage induced failures. Recently, a new drainage device was proposed to tackle these problems. Preliminary field implementations indicated that the new drainage device could effectively remove groundwater from the surrounding soil without any clogging effect. However, at present, most existing designs are purely based upon the engineers' personal experience and judgement; there is no well-established design method to take full advantage of the device.In this study, a series of laboratory modeling tests were conducted to investigate flow rates, and the optimum installation angle of the drainage device. After that, the long-term performance of the drainage device and conventional perforated PVC pipe under multiple wetting-drying cycles was also evaluated and compared. The results indicate that during the constant head tests, the flow rates in the new drainage device initially increased with an increase in the installation angles of the drainage device from 0° to 15°, and then decreased from 15° to 60°. An inclination angle from 5° to 15° is recommended for this new drainage device when installed in the exiting railway cut slope. The clogging effect was not a primary concern for the applications of this new device. The proposed drainage device provides an alternative way to tackle the poor drainage problem in the exiting railway cut slopes and retaining walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.