Abstract
The goal of screening programs for inborn errors of metabolism (IEM) is early detection and timely intervention to significantly reduce morbidity, mortality and associated disabilities. Phenylketonuria exemplifies their success as neonates are identified at birth and then promptly treated allowing normal neurological development. Lysosomal diseases comprise about 50 IEM arising from a deficiency in a protein required for proper lysosomal function. Typically, these defects are in lysosomal enzymes with the concomitant accumulation of the enzyme's substrate as the cardinal feature. None of the lysosomal diseases are screened at birth in Australia and in the absence of a family history, traditional laboratory diagnosis of the majority, involves demonstrating a deficiency of the requisite enzyme. Diagnostic confusion can arise from interpretation of the degree of residual enzyme activity causative of disease and is impractical when the disorder is not due to an enzyme deficiency per se. Advances in mass spectrometry technologies has enabled simultaneous measurement of the enzymes' substrates and their metabolites which facilitates the efficiency of diagnosis. Employing urine chemistry as a reflection of multisystemic disease, individual lysosomal diseases can be identified by a characteristic substrate pattern complicit with the enzyme deficiency. Determination of lipids in plasma allows the diagnosis of a further class of lysosomal disorders, the sphingolipids. The ideal goal would be to measure biomarkers for each specific lysosomal disorder in the one mass spectrometry-based platform to achieve a diagnosis. Confirmation of the diagnosis is usually by identifying pathogenic variants in the underlying gene, and although molecular genetic technologies can provide the initial diagnosis, the biochemistry will remain important for interpreting molecular variants of uncertain significance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.