Abstract

The oil sands industry usually leads to the production of large quantities of mineral waste, such as fluid fine tailings (FFT), whose disposal is often challenging. Electrokinetic geocomposites (eGCPs) installed into the FFT disposal area may improve in situ dewatering, as eGCPs can drain water expulsed during FFT consolidation as well as impose a voltage across FFT to displace water by electro-osmosis. This paper presents a laboratory device specifically developed to evaluate eGCP performance for sludge dewatering. Based on the oedometer principle, the device aims at studying sludge consolidation as a function of boundary conditions (mechanical stress and (or) voltage), with drainage and electrical conduction ensured by two eGCPs positioned on both sides of the sludge layer. Preliminary results obtained with one particular eGCP are presented: the solids content was increased from 42% to 66%, which led to a significant improvement of the shear strength from nearly 0 kPa to a mean value of 40 kPa. The energy required for this experiment was 71 W·h (3.5 kW·h/(m3 of sludge)). The filtration performance remained satisfactory; the sludge particles were retained upstream of the filter, with clean water flowing through.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.