Abstract

U.S. Code of Federal Regulations 30 CFR 75.402 and 75.403 require 80% total incombustible content to be maintained within 40 feet of the coal mine face via the liberal application of rock dust. Unfortunately, this application of rock dust limits miners' visibility downwind and can increase the miners' exposures to a respirable nuisance dust. Wet rock dust applied as a slurry is, at times, used to negate these negative effects. Although this aids in meeting the total incombustible limits, the slurry forms a hard cake when dried and no longer effectively disperses as needed to suppress a coal dust explosion. As a result, a dry rock dust must be reapplied to maintain a dispersible layer. Therefore, researchers from the National Institute for Occupational Safety and Health (NIOSH) have been working towards finding and testing a foamed rock dust formulation that can be applied wet on mine surfaces and remain dispersible once dried which minimizes the likelihood of mine disasters, including mine explosions. The initial tests were aimed at discerning dispersion characteristics of three different foamed rock dusts via the NIOSH-developed dispersion chamber and led to identification of a two-part foam with adequate dispersion characteristics. The current study was conducted to assess the robustness of the two-part foamed rock dust. Through a series of laboratory-scale experiments using the dispersibility chamber, the effects of testing conditions and product formulations on the foam's dispersibility was determined. Some of the tested variables include: exposing the foam to high humidity, varying the component levels of the foamed rock dust, altering the rock dust size distribution, and varying the rock dust types. Further pilot-scale tests examined the atmospheric concentrations of dust via personal dust monitors downwind of foamed rock dust production and application. Additionally, product consistency was recorded during pilot-scale testing at key points in the formulation and application. The results of these experiments will be discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call