Abstract
Underground hydrogen storage in saline aquifers is a promising way to store large amounts of energy. Utilization of gas cushion enhances the deliverability of the storage and increases the volume of recovery gas. The key factor for the cushion characterization is cushion gas and storage gas mixing which can be used for simulation of mixing zone evolution. In this work coreflooding setup utilizing Raman spectroscopy is built and used for dispersion coefficient determination. Berea sandstone rock core is used as a test sample for setup validation and core entry/exit effects estimation. Dispersion for hydrogen and methane as displacing fluids is determined for 4 locations perspective for hydrogen storage in Poland is found. Reservoir structures most suitable for pure hydrogen or hydrogen/methane blend storage are selected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.