Abstract

Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Laboratory culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthetic pathways of the luciferins. Other groups, including terrestrial fireflies, do synthesize their own luciferin, but culturing them is difficult and the biosynthetic pathway for firefly luciferin remains unclear. An additional independent origin of endogenous bioluminescence is found within ostracods from the family Cypridinidae, which use their luminescence for defense and, in Caribbean species, for courtship displays. Here, we report the first complete life cycle of a luminous ostracod (Vargula tsujii Kornicker & Baker, 1977, the California Sea Firefly) in the laboratory. We also describe the late-stage embryogenesis of Vargula tsujii and discuss the size classes of instar development. We find embryogenesis in V. tsujii ranges from 25–38 days, and this species appears to have five instar stages, consistent with ontogeny in other cypridinid lineages. We estimate a complete life cycle at 3–4 months. We also present the first complete mitochondrial genome for Vargula tsujii. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system.

Highlights

  • Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa

  • There are other independent origins of autogenic bioluminescence, which we define as light produced via luciferase and luciferin that are synthesized via the genome of the light producing animal, no laboratory cultures of these animals currently exist

  • Due to the independent origin of ostracod bioluminescence in the family Cypridinidae, and evidence for the autogenic nature of the necessary luciferin and luciferase, ostracods represent an important lineage for understanding how bioluminescence evolved[21]

Read more

Summary

Introduction

Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system. There are other independent origins of autogenic bioluminescence, which we define as light produced via luciferase and luciferin that are synthesized via the genome of the light producing animal, no laboratory cultures of these animals currently exist This makes additional comparative studies on the evolution of this ability extremely challenging. Establishing laboratory cultures of luminescent ostracods within Cypridinidae will provide opportunities for new investigations into the biosynthetic pathway of luciferins in Metazoa, as well as comparative studies of the biochemistry, physiology, genetics, and function of endogenous bioluminescence. The conserved nature of the luminescent chemical reaction provides a system within which bioluminescence can produce rapid changes in phenotypic diversity by modifying amino acid sequences of the enzyme and how the enzyme is used[29]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.