Abstract

BackgroundIn most developing countries, puerperal sepsis is treated empirically with broad spectrum antibiotics due to lack of resources for culture and antibiotics susceptibility testing. However, empirical treatment does not guarantee treatment success and may promote antimicrobial resistance. We set to determine etiological agents and susceptibility pattern to commonly prescribed antimicrobial agents, among women suspected of puerperal sepsis, and admitted at Muhimbili National Hospital.MethodsHospital based cross-sectional study conducted at tertiary hospital from December 2017 to April 2018. The study recruited post-delivery women suspected with puerperal sepsis. Socio- demographic, clinical and obstetric information were collected using structured questionnaire. Blood and endocervical swab samples were collected for aerobic culture. Blood culture bottles were incubated in BACTEC FX40 (Becton–Dickinson, Sparks, MD, USA). Positive blood cultures and cervical swabs were inoculated onto sheep blood agar, MacConkey agar, chocolate agar and Sabouraud’s dextrose agar, incubated aerobically at 37 °C for 18–24 h. Antimicrobial susceptibility was determined by Kirby-Bauer disc diffusion method.ResultsA total of 197women were recruited, of whom 50.3% had spontaneous vaginal delivery, while 49.2% had caesarean section. Bacteraemia was detected in 22 (11.2%) women, along with 86 (43.6%) isolated from endocervical swabs. Gram-negative bacilli were the predominant isolates detected in 92(46.7%) cases. Majority of the isolates were E. coli 68(61.8%) followed by Klebsiella spp. 22(20.0%). E. coli were highly susceptible to meropenem (97.0%), while resistance to ceftriaxone, ampicillin and ceftazidime was 64.7, 67.6 and 63.2%, respectively. Klebsiella spp. were susceptible to meropenem (86.4%) and resistant to ceftriaxone (77.3%), gentamicin (86.4%), ampicillin (81.8%) and ceftazidime (86.4%). Staphylococcus aureus isolates were 100% susceptible to clindamycin. The proportion of extended spectrum beta lactamase producers among gram-negative bacilli was 64(69.6%) and 53.8% of S. aureus isolates were resistant to methicillin.ConclusionIn this study puerperal sepsis was mostly caused by E. coli and Klebsiella spp. Causative agents exhibited very high levels of resistance to most antibiotics used in empiric treatment calling for review of treatment guidelines and strict infection control procedures.

Highlights

  • In most developing countries, puerperal sepsis is treated empirically with broad spectrum antibiotics due to lack of resources for culture and antibiotics susceptibility testing

  • The study employed convenient sampling to recruit women admitted in maternity wards for postnatal care with clinical diagnosis of puerperal sepsis based on World Health Organization (WHO) criteria [1]

  • A total of 214 women admitted at Muhimbili National Hospital (MNH) between December 2017 and April 2018 suspected of having puerperal sepsis, were assessed for recruitment eligibility

Read more

Summary

Introduction

Puerperal sepsis is treated empirically with broad spectrum antibiotics due to lack of resources for culture and antibiotics susceptibility testing. Puerperal sepsis accounts for 15% of maternal deaths worldwide [1]. In Africa, puerperal sepsis is the second leading cause of maternal morbidity and mortality, accounting for more than 10% of maternal deaths [1]. The rate of puerperal sepsis has declined significantly in high-income countries. In the United States puerperal sepsis occur in only 5.5% of vaginal deliveries and 7.4% of caesarean section deliveries [2, 3]. Maternal anaemia, prolonged labour, excessive number of vaginal examinations during labour as well as prolonged rupture of membranes, increases the risk of puerperal sepsis. Variety of bacterial pathogens have been implicated in causing puerperal sepsis including: wide range of anaerobes like Peptostretococcus, Clostridia, Pseudomonas and Bactericides fragilis and facultative aerobes such as Escherichia coli, enterococci, Klebsiella spp., beta-haemolytic Streptococci, and staphylococci [4, 6,7,8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call