Abstract

Abstract Heterogeneous nature of the Cretaceous carbonate reservoirs in Abu Dhabi increases there complexity to attain efficient characterization and hence development. During depletion, reservoir pressure reduction results in unequal increase of vertical and horizontal effective stresses and thus an overall increase in the effective mean and shear stresses on the reservoir pore structure. At reservoir pressures below a critical value (obtained via laboratory testing or post failure field analysis), the reservoir compacts at accelerated rates. Compaction and its associated reduction in reservoir pore volume leads to rapid loss in permeability, generation of fines and wellbore stability issues (e.g., casing collapse). Assessing the magnitude of these changes require laboratory measurements of rock compressibility (grain, bulk and pore compressibilities), and concurrent evaluations of reduction of pore volume, porosity and permeability as a function of reservoir pressure needs to be appropriately simulated in-situ stress conditions. Poor appreciation of the rock compressibility mechanics and its robust dependence on stress path (e.g., hydrostatic- and/or uniaxial strain compression) in addition to depletion rate may result in substantial cost. The core intervals are selected to capture the lateral and vertical heterogeneity encountered in the studied reservoirs. The test program was designed to create a material model to capture the rock response to potential reservoir pressure changes. Single Stage Triaxial tests at multiple confining stresses were conducted to judge the shear failure. Tests recommended for evaluation and assessment of reservoir compaction are Uniaxial-strain compression (far-field compaction), triaxial compression (near wellbore), Hydrostatic (define the compaction cap) and constant stress-path. Additional tests were carried to characterize the poro-elastic response of reservoir rock and the stress-dependent permeability. A combined failure envelope (defining shear (dilatant) and compaction ("Cap") for compactable sediments) of the rock was generated by integrating the results from Single stage Triaxial tests (Shear failure envelope), hydrostatic compression tests and UPVC tests (Compaction failure envelope). For field applications, it is useful to provide a visualization of the pre-production-state in-situ stress conditions, and the possible stress path trajectories of the reservoir, as a function of reservoir depletion. Such a failure envelope was generated for all the different lithofacies encountered across the field. The characterized material model enables us to assess and predict the risk of shear/compaction deformation associated with the reservoir pressure changes (considering field stress path). Using this display, the level of depletion resulting in accelerated compaction can be identified through laboratory testing. The introduced workflow presents a comprehensive geomechanical characterization program for such complex carbonate reservoir. This utilizes a systematic approach to generate field wide understanding of rock response to depletion and injection. It can also act as a guide to address the compaction-based challenges faced in other reservoirs of Abu Dhabi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call