Abstract
We present experimental results on the formation of supersonic, radiatively cooled jets driven by the toroidal magnetic field generated by the 1.5 MA, 250 ns current from the MAGPIE generator. The morphology of the jet produced in the experiments is relevant to astrophysical jet scenarios in which the jet on the axis of a magnetic cavity expanding into an ambient medium is collimated by a toroidal magnetic field. The jets in our experiments have similar Mach number, plasma beta and cooling parameter to those in protostellar jets and additionally the Reynolds, magnetic Reynolds and Peclet numbers are much larger than unity, allowing the experiments to be scaled to astrophysical flows. The experimental configuration generates episodic magnetic cavities, suggesting that periodic formation of jets in astrophysical situations could be responsible for some of the variability observed in astrophysical jets. The dynamics of the formation of laboratory jets are presented, together with new results including preliminary measurements of magnetic, kinetic and Poynting energy of the outflows. In addition first estimates of jet temperature and trapped toroidal magnetic field are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.