Abstract

Abstract Replacing oil from small pores of tight oil-wet rocks relies on altering the rock wettability with the injected fracturing fluid. Among different types of wettability-alteration surfactants, the liquid nanofluid has less adsorption loss during transport in the porous media, and can efficiently alter the rock wettability; meanwhile, it can also maintain a certain oil-water interfacial tension driving the water imbibition. In the previous study, the main properties of a Nonionic nanofluid-diluted microemulsion (DME) were evaluated, and the dispersion coefficient and adsorption rate of DME in tight rock under different conditions were quantified. In this study, to more intuitively show the change of wettability of DME to oil-wet rocks in the process of core flooding experiments and the changes of the water invasion front, CT is used to carry out on-line core flooding experiments, scan and calculate the water saturation in time, and compare it with the pressure drop in this process. Besides, the heterogeneity of rock samples is quantified in this paper. The results show that when the DME is used as the fracturing fluid additive, fingering of the water phase is observed at the beginning of the invasion; compared with brine, the fracturing fluid with DME has deeper invasion depth at the same time; the water invasion front gradually becomes uniform when the DME alters the rock wettability and triggers the imbibition; for tight rocks, DME can enter deeper pores and replace more oil because of its dominance. Finally, the selected nanofluids of DME were tested in two horizontal wells in the field, and their flowback fluids were collected and analyzed. The results show that the average droplet size of the flowback fluids in the wells using DME decreases with production time, and the altered wetting ability gradually returns to the level of the injected fracturing fluid. It can be confirmed that DME can migrate within the tight rock, make the rock surface more water-wet and enhance the imbibition capacity of the fracturing fluid, to reduce the reservoir pressure decline rate and increase production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.