Abstract

The paper presents the results of laboratory studies performed on produced anti-wear coatings as well as the results of performance tests conducted on tools with these coatings in industrial conditions, in the process of hot die forging. Three different coatings were selected: AlCrTiSiN, Cr/CrN and AlCrTiN, deposited by means of the vacuum-arc method on test samples as well as forging tools used in the hot forging process of a lid. The first part of the paper discusses the results of the studies performed in laboratory conditions, which included: surface morphology by means of SEM, hardness and Young modulus measurements, determination of the chemical composition by means of the EDS method, adhesion tests by means of the scratch method and tribological tests by means of the ball-on-disk method. The obtained results were correlated and applied in the analysis of the performance tests on forging punches with these coatings at an early stage of their performance (up to 4000 produced forgings), which were tested on 19 tools, of which 3 representatives were selected for each coating. A thorough analysis was performed of the wear phenomena and mechanisms and the manner of wear of hybrid layers as well as their resistance to the particular destructive mechanisms. Based on the performed laboratory and performance studies as well as their analysis, it was possible to select the optimal hybrid layer, which enables an increase in the durability of forging tools used in industrial hot die forging processes. The preliminary results showed that the best results for the whole working surface of the tool were obtained for the Cr/CrN layer, which characterizes in high adhesion as well as a lower Young modulus and hardness. In the case of high pressures and the correlated friction, better results were obtained for the AlCrTiN coating, which, besides its good adhesion properties, also exhibited the highest frictional resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.