Abstract

Although the specific cDNA amplification mechanisms of reverse-transcriptase polymerase chain reaction (RT-PCR) and RT loop-mediated isothermal amplification (RT-LAMP) are very different, both molecular assays serve as options to detect arboviral RNA in mosquito pools. Like RT-PCR, RT-LAMP uses a reverse transcription step to synthesize complementary DNA (cDNA) from an RNA template and then uses target-specific primers to amplify cDNA to detectable levels in a single-tube reaction. Using laboratory-generated West Nile virus (WNV) samples and field-collected mosquito pools, we evaluated the sensitivity and specificity of a commercially available WNV real-time RT-LAMP assay (Pro-AmpRT™ WNV; Pro-Lab Diagnostics, Inc., Round Rock, Texas) and compared the results to a validated real-time RT-PCR assay. Laboratory generated virus stock samples containing ≥ 2.3 log10 plaque-forming units (PFU)/ml and intrathoracically inoculated mosquitoes containing ≥ 2.4 log10 PFU/ml produced positive results in the Pro-AmpRT WNV assay. Of field-collected pools that were WNV positive by real-time RT-PCR, 74.5% (70 of 94) were also positive by the Pro-AmpRT WNV assay, resulting in an overall Cohen's kappa agreement of 79.4% between the 2 tests. The Pro-AmpRT WNV assay shows promise as a suitable virus screening tool for vector surveillance programs provided agencies are aware of its characteristics and limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.