Abstract

A former mining site has been the subject of extensive remediation and restoration, with a significant focus on disconnecting mine spoils from groundwater and managing the quantity and quality of runoff. A remaining task is ensuring concentrations of zinc (Zn) in the stream outflow of a pit lake are reduced below water quality standards. The efficacy of multiple capping materials for decreasing Zn dissolution from sediments was conducted under natural and reasonable worst-case conditions (pH = 5.5). Capping materials included AquaBlok™, limestone, and limestone-bone char. Field exposures were conducted in limnocorrals that isolated overlying water columns above the sediment and capping treatments. Simultaneous in situ and ex situ toxicity tests were conducted using Daphnia magna, Hyalella azteca, and Chironomus dilutus. In situ caged organisms were protected from temperature shock (warm epilimnetic waters) by deploying within a Toxicity Assessment Container System (TACS). Organisms were exposed to surficial sediments, caps, and hypolimnetic overlying waters for 4 d. Ex situ testing was conducted in core tube mesocosms containing sediments and caps at similar temperatures (15-19 °C). Results demonstrated the usefulness of TACS deployment in stratified lake systems. There were no differences in responses between treatments involving sediment capping materials in both in situ and ex situ tests. The lack of differences was likely due to dissolved Zn in surface water being below the hardness-adjusted threshold effects levels (164 μg L-1 ). This field- and laboratory-based weight-of-evidence study provided site-specific data to support the selection of an effective remedy, with reduced uncertainty compared to laboratory and chemistry-only approaches. Environ Toxicol Chem 2019;39:240-249. © 2019 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.