Abstract

The aim of this study is to determine the performance of a lab-made electronic nose (e-nose) composed of an array of metal oxide semiconductor (MOS) gas sensors in the detection and differentiation of Listeria monocytogenes (L. monocytogenes) and Bacillus cereus (B. cereus) incubated in trypticsoy broth (TSB) media. Conventionally, the detection of L. monocytogenes and B. cereus is often performed by enzyme link immunosorbent assay (ELISA) and polymerase chain reaction (PCR). These techniques require trained operators and expert, expensive reagents and specific containment. In this study, three types of samples, namely, TSB media, L. monocytogenes (serotype 4b American Type Culture Collection (ATCC) 13792), and B. cereus (ATCC) 10876, were used for this experiment. Prior to measurement using the e-nose, each bacterium was inoculated in TSB at 1 × 103–104 CFU/mL, followed by incubation for 48 h. To evaluate the performance of the e-nose, the measured data were then analyzed with chemometric models, namely linear and quadratic discriminant analysis (LDA and QDA), and support vector machine (SVM). As a result, the e-nose coupled with SVM showeda high accuracy of 98% in discriminating between TSB media and L. monocytogenes, and between TSB media and B. cereus. It could be concluded that the lab-made e-nose is able to detect rapidly the presence of bacteria L. monocytogenes and B. cereus on TSB media. For the future, it could be used to identify the presence of L. monocytogenes or B. cereus contamination in the routine and fast assessment of food products in animal quarantine.

Highlights

  • Foodborne illness has become a critical issue in global public health to date

  • The L. monocytogenes and B. cereus stocks were thawed in a water bath at 37 ◦ C for approximately

  • The bacterial count was performed by total plate count (TPC) or bacteria counting was carried out prior to determining the total number of the stock culture of each sample, which was used for each replicate, followed by bacteria re-identification

Read more

Summary

Introduction

Foodborne illness has become a critical issue in global public health to date. According to WHO (2015), almost 600 million disease cases caused by the consumption of contaminated food by pathogenic bacteria. Salmonella sp., Escherichia coli O157:H7, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus are known pathogens in food [1,2]. Those bacteria are a threat to ready-to-eat foods. They survive in an unfavorable environment during food production and storage (i.e., low pH, low temperature, and high salt) [3].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.