Abstract

The rigorous analytical solution for the fluxes from a mixture of 1:1 metal complexes toward an active surface under steady-state planar diffusion in a finite domain and excess ligand conditions allows for the computation of the global degree of lability of the system as well as particular degrees of lability of each complex in the mixture. This kind of system is found in a variety of fields ranging from electrochemical techniques (such as stripping chronopotentiometry at scanned deposition potential, SSCP) to analytical devices (such as diffusion gradients in thin-film gels, DGT). Among the specific effects arising from the presence of a mixture of ligands competing for the metal we highlight the following: (i) The degree of lability of a complex in the mixture differs from its degree of lability in an unmixed system with the same ligand concentration, and (ii) the degree of lability of one complex depends on (i.e., can be modified with) the concentrations of the ligands in the mixture. The impact of these characteristics on the metal flux crossing the active surface reaches the highest value when both complexes are partially labile. The complex contribution to the metal flux goes through a maximum when the thickness of the diffusion domain is varied. Thus, the thickness of the diffusion domain can be chosen to enhance the contribution of one particular complex. Lability criteria for each complex of the mixture within the reaction layer approximation are also reported. In particular, the reaction layer formulation for a complex is discussed in detail for two limiting cases: the rest of complexes are all nonlabile or the rest of complexes are all labile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.