Abstract

Inland freshwater marshes are notable contributors to soil organic carbon (SOC) pool across the globe. Input of labile C can greatly affect the direction and intensity of priming effects (PE) on SOC decomposition, which will likely be altered under climate warming. However, the effects of temperature on priming of wetland SOC mineralization and its temperature sensitivity (Q10) under varied C inputs remain unclear. We conducted a laboratory incubation experiment with 13C-glucose addition to investigate the effects of labile C on priming and Q10 values of the freshwater wetland SOC decomposition at 10 and 20 °C in Northeast China. Results showed that temperature and glucose additions had significant effects on CO2 efflux rates, but interactive effects were not observed. The positive priming that increased with increasing C added at both temperatures was detected, while the magnitude of priming at 10 °C was higher than that at 20 °C. There were no significant differences in Q10 values under low and high glucose additions, both of which were obviously lower than that of no glucose addition treatment. Total microbial biomass (total PLFAs) at 20 °C was significantly decreased compared to that at 10 °C, while the opposite trend was observed for CO2 efflux at the end of incubation. High glucose addition induced higher PLFAs than other treatments at both temperatures, but the composition of microbial community was not significantly altered by temperature under labile additions. We conclude that substrate availability and temperature change may have great impacts on wetland soil C turnover through priming effects. We highlight that more attention should be paid on the relationship between labile substrates and temperature sensitivity of decomposition under climate warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.