Abstract

An increasingly important challenge in network analysis is efficient detection and tracking of communities in dynamic networks for which changes arrive as a stream. There is a need for algorithms that can incrementally update and monitor communities whose evolution generates huge real-time data streams, such as the Internet or on-line social networks. In this paper, we propose LabelRankT, an on-line distributed algorithm for detection of communities in large-scale dynamic networks through stabilized label propagation. Results of tests on real-world networks demonstrate that LabelRankT has much lower computational costs than other algorithms. It also improves the quality of the detected communities compared to dynamic detection methods and matches the quality achieved by static detection approaches. Unlike most of other algorithms which apply only to binary networks, LabelRankT works on weighted and directed networks, which provides a flexible and promising solution for real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.