Abstract

Given a positive integer k and a graph G, a k-limited packing in G is a subset B of its vertex set such that each closed vertex neighborhood of G has at most k vertices of B (Gallant et al., 2010). A first generalization of this concept deals with a subset of vertices that cannot be in the set B and also, the number k is not a constant but it depends on the vertex neighborhood (Dobson et al., 2010). As another variation, a {k}-packing function f of G assigns a non-negative integer to the vertices of G in such a way that the sum of the values of f over each closed vertex neighborhood is at most k (Hinrichsen et al., 2014). The three associated decision problems are NP-complete in the general case. We introduce L-packing functions as a unified notion that generalizes all limited packing concepts introduced up to now. We present a linear time algorithm that solves the problem of finding the maximum weight of an L-packing function in strongly chordal graphs when a strong elimination ordering is given that includes the linear algorithm for {k}-packing functions in strongly chordal graphs (2014). Besides, we show how the algorithm can be used to solve the known clique-independence problem on strongly chordal graphs in linear time (G. Chang et al., 1993).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.