Abstract

The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter (D4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) (z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was detected around the cell nucleus. We demonstrated that the rhodamine B-conjugated triglyceride is a promising new material to obtain versatile dye-labeled nanocarriers presenting different chemical nature in their surfaces.

Highlights

  • Polymeric nanocapsules, which are nanoscale particles prepared by self-assembling methods and composed of a polymeric wall surrounding an oily core, have been studied to direct drugs toward their targeted therapeutic site of action [1,2,3,4]

  • Synthesis of the product 1 The product 1 was obtained as a brilliant orange oily product after the reaction of the vegetable oil with rhodamine B in the presence of EDCI and DMAP (Figure 1) followed by purification through column chromatography

  • Rhodamine B eluted with a retention factor (Rf) of 0.14

Read more

Summary

Introduction

Polymeric nanocapsules, which are nanoscale particles prepared by self-assembling methods and composed of a polymeric wall surrounding an oily core, have been studied to direct drugs toward their targeted therapeutic site of action [1,2,3,4]. Fluorescent techniques can be applied to verify the location of the nanoparticles within cells or their mechanisms of interaction with cells or tissues [11,12,13,14,15]. For this purpose, a fluorescent dye must be physically entrapped within [16,17] or chemically bound to [12,18,19] the nanocarriers. Greater stability of the dye-particle complex can be achieved, and the kinetics of the dye release from the particle should be slower, reducing the possibility of false results

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call