Abstract

Elucidating physiological and pathogenic functions of protein methyltransferases (PMTs) relies on knowing their substrate profiles. S-adenosyl-L-methionine (SAM) is the sole methyl-donor cofactor of PMTs. Recently, SAM analogues have emerged as novel small-molecule tools to efficiently label PMT substrates. Here we reported the development of a clickable SAM analogue cofactor, 4-propargyloxy-but-2-enyl SAM, and its implementation to label substrates of human protein arginine methyltransferase 1 (PRMT1). In the system, the SAM analogue cofactor, coupled with matched PRMT1 mutants rather than native PRMT1, was shown to label PRMT1 substrates. The transferable 4-propargyloxy-but-2-enyl moiety of the SAM analogue further allowed corresponding modified substrates to be characterized through a subsequent click chemical ligation with an azido-based probe. The SAM analogue, in combination with a rational protein-engineering approach, thus shows potential to label and identify PMT targets in the context of a complex cellular mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call