Abstract

In Xenopus the first blood cells to differentiate in the embryo are the primitive myeloid lineages, which arise from the anterior ventral blood islands during the neurula stages. Primitive myeloid cells (PMCs) will give rise to the embryonic pool of neutrophils and macrophages, a highly migratory population of cells with various functions during development and tissue repair. Understanding the development and behavior of PMCs depends on our ability to label, manipulate, and image these cells. Xenopus embryos have several advantages in the study of PMCs, including a well-established fate map and the possibility of performing transplants in order to label these cells. In addition, Xenopus embryos are easy to manipulate and their external development and transparency at the tadpole stages make them amenable to imaging techniques. Here we describe two methods for labeling primitive myeloid progenitor cells during early Xenopus development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.