Abstract
Methionine metabolism has a significant impact on T cells' survival and activation even in comparison to arginine, a well-documented amino acid in metabolic therapy. However, hydrophilic methionine is hardly delivered into TME due to difficult loading and rapid diffusion. Herein, the labeling assembly of methionine into nanoparticle is developed to overcome high hydrophilicity for mild-heat mediated immunometabolic therapy. The strategy is to first label methionine with protocatechualdehyde (as the tag) via reversible Schiff-base bond, and then drive nanoassembly of methionine (MPC@Fe) mediated by iron ions. In this fashion, a loading efficiency of 40% and assembly induced photothermal characteristics can be achieved. MPC@Fe can accumulate persistently in tumor up to 36h due to tumor-selective aggregation in acidic TME. A mild heat of 43°C on tumor by light irradiation stimulated the immunogenic cell death and effectively generated CD8+ T cells. Notably, MPC@Fe assisted by mild heat promoted 4.2-fold of tumor-infiltrating INF-γ+ CD8+ T cells, leading to an inhibition ratio of 27.3-fold versus the free methionine. Such labeling assembly provides a promising methionine delivery platform to realize mild heat mediated immunometabolic therapy, and is potentially extensible to other amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.