Abstract

Cell viability is an essential physiological status for drug screening. While cell staining is a conventional cell viability analysis method, dye staining is usually cytotoxic. Alternatively, impedance cytometry provides a straightforward and label-free sensing approach for the assessment of cell viability. A key element of impedance cytometry is its sensing electrodes. Most state-of-the-art electrodes are made of expensive metals, microfabricated by lithography, with a typical size of ten microns. In this work, we proposed a low-cost microfluidic impedance cytometry device with 100-micron wide indium tin oxide (ITO) electrodes to achieve a comparable performance to the 10-micron wide Au electrodes. The effectiveness was experimentally verified as 7 μm beads can be distinguished from 10 μm beads. To the best of our knowledge, this is the lowest geometry ratio of the target to the sensing unit in the impedance cytometry technology. Furthermore, a cell viability test was performed on MCF-7 cells. The proposed double differential impedance cytometry device has successfully differentiated the living and dead MCF-7 cells with a throughput of ~1000 cells/s. The label-free and low-cost, high-throughput impedance cytometry could benefit drug screening, fundamental biological research and other biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.